Quasi-Likelihood Functions, Generalized Linear Models, and the Gauss-Newton Method

نویسنده

  • R. W. M. Wedderburn
چکیده

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Nonparametric Regression Models

Almost all of the current nonparametric regression methods such as smoothing splines, generalized additive models and varying coefficients models assume a linear relationship when nonparametric functions are regarded as parameters. In this article, we propose a general class of nonlinear nonparametric models that allow nonparametric functions to act nonlinearly. They arise in many fields as eit...

متن کامل

Statistical Inference in Generalized Linear Mixed Models by Joint Modelling Mean and Covariance of Non-Normal Random Effects

Generalized linear mixed models (GLMMs) are typically constructed by incorporating random effects into the linear predictor. The random effects are usually assumed to be normally distributed with mean zero and variance-covariance identity matrix. In this paper, we propose to release random effects to non-normal distributions and discuss how to model the mean and covariance structures in GLMMs s...

متن کامل

Comparison of Different Estimation Methods for Linear Mixed Models and Generalized Linear Mixed Models

Linear mixed models (LMM) and generalized linear mixed models (GLMM) are widely used in regression analyses. With the variance structure dependent on the random effects with their variance components, the parameter estimation of LMMs is more complicated than linear models (LM). Generally, we use maximum likelihood estimation (MLE) together with some procedure such as derivative free optimizatio...

متن کامل

Multinomial logit random effects models

This article presents a general approach for logit random effects modelling of clustered ordinal and nominal responses. We review multinomial logit random effects models in a unified form as multivariate generalized linear mixed models. Maximum likelihood estimation utilizes adaptive Gauss–Hermite quadrature within a quasi-Newton maximization algorithm. For cases in which this is computationall...

متن کامل

A class of multi-agent discrete hybrid non linearizable systems: Optimal controller design based on quasi-Newton algorithm for a class of sign-undefinite hessian cost functions

 In the present paper, a class of hybrid, nonlinear and non linearizable dynamic systems is considered. The noted dynamic system is generalized to a multi-agent configuration. The interaction of agents is presented based on graph theory and finally, an interaction tensor defines the multi-agent system in leader-follower consensus in order to design a desirable controller for the noted system. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007